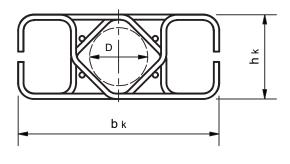
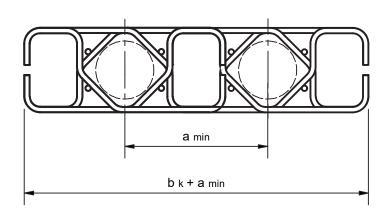


GRAVIDUR® TUB

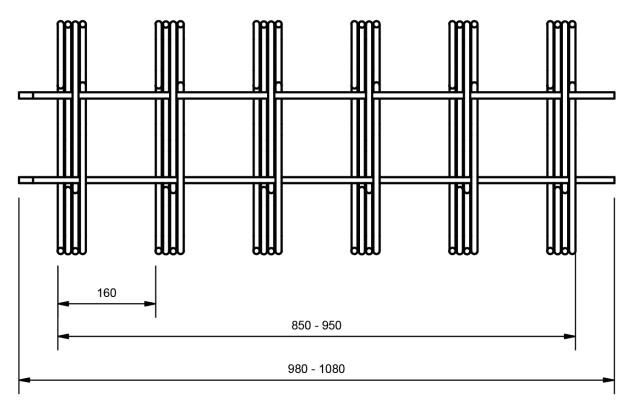
Technische Dokumentation Querkraftbewehrung für Rohrleitungen

Beschreibung

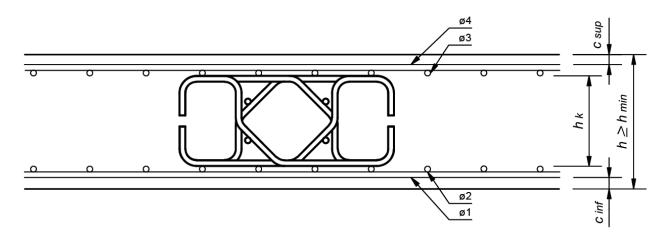

GRAVIDUR TUB


GRAVIDUR TUB sind Bügelkörbe für den Einsatz als Querkraftbewehrung im Bereich von Leitungen bei Stahlbetonplatten. Die Bügel bestehen aus Betonstahl B500B und haben einen Durchmesser von 10 mm und 12 mm.

Modelle und Abmessungen


Modell	Max. Leitungs- durchmesser D [mm]	Min Plattendicke* h _{min} [mm]	Höhe Korb h _K [mm]	Breite Korb <i>b_K</i> [mm]	Min. Achsabstand a _{min} [mm]
GRAVIDUR TUB-135	90	215	135	356	245
GRAVIDUR TUB-160	110	240	160	381	265
GRAVIDUR TUB-185	125	265	185	406	295
GRAVIDUR TUB-210	140	290	210	431	320
GRAVIDUR TUB-235	160	315	235	456	345
GRAVIDUR TUB-260	180	340	260	486	370
GRAVIDUR TUB-285	200	365	285	511	390
GRAVIDUR TUB-310	215	390	310	536	420
GRAVIDUR TUB-320	220	400	320	546	434

 $^{{}^*}C_o = C_u = 20 \text{ mm}, \varnothing 1 = \varnothing 2 = \varnothing 3 = \varnothing 4 = 10 \text{ mm}$


Bemessungswerte

Es darf der Querkraftwiderstand einer ungestörten Platte ohne Querkraftbewehrung gemäss SIA 262:2025 Ziffer 4.3.3.2.1 ff angesetzt werden. Bei Verwendung von GRAVIDUR TUB sind keine weiteren Tragsicherheitsnachweise erforderlich.

Konstruktive Durchbildung

Mindesthöhen

Die GRAVIDUR TUB Körbe werden zwischen der 2. und 3. Bewehrungslage verlegt. Die minimale Plattendicke ergibt sich, wenn der GRAVIDUR TUB Korb den freien Raum zwischen der 2. und 3. Lage komplett ausfüllt.

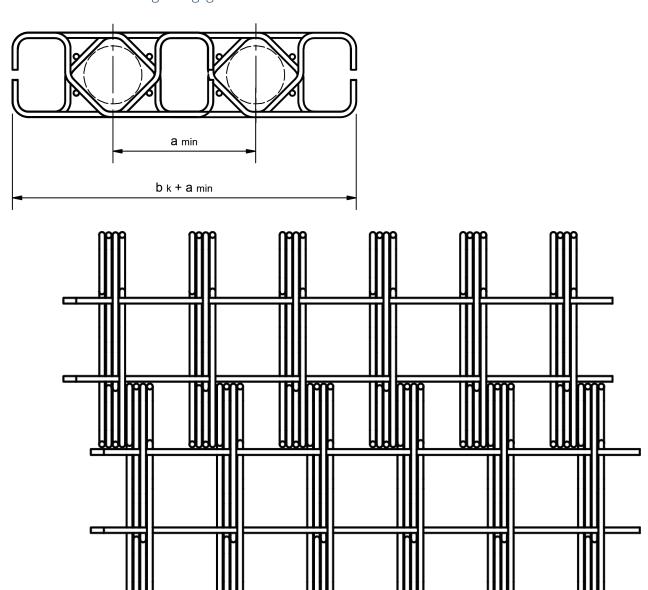
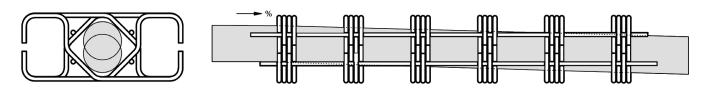

$$h_{min} = h_k + C_{sup} + C_{inf} + \varnothing 1 + \varnothing 2 + \varnothing 3 + \varnothing 4$$

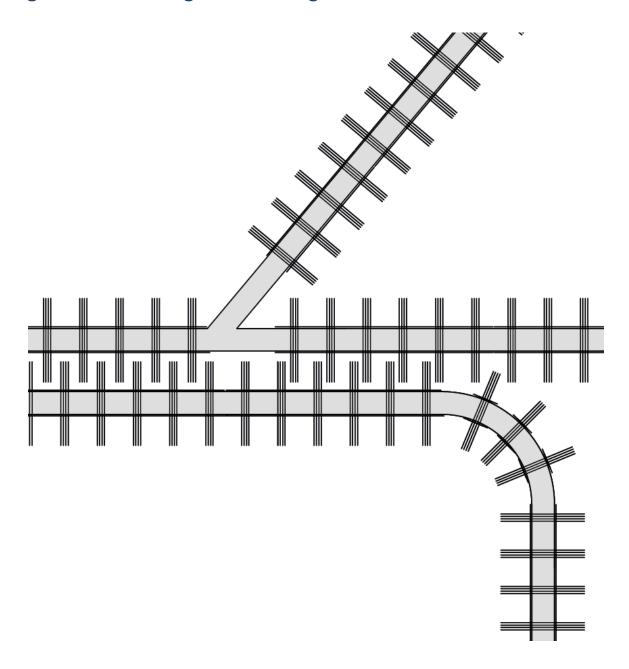
Bild 2: Anordnung zwischen der 2. und 3. Lage



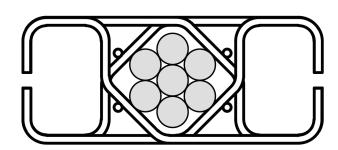
Abstände

GRAVIDUR TUB Körbe können ineinander versetzt angeordnet werden. Die minimalen Abstände sind Tabelle Modelle und Abmessungen angegeben.

Leitungen mit Gefälle



 $D = m * L + \emptyset_{Leitung} [f \ddot{u} r m < 5\%]$


Bild 4: Bei Leitungen mit Gefälle

Gebogene und abzweigende Leitungen

Mehrere Leitungen in einer GRAVIDUR TUB

Bezeichnungen

 $\begin{array}{ll} a_{\min} & \text{Minimaler Achsabstand} \\ b_{\text{K}} & \text{Breite GRAVIDUR TUB} \\ c_{\text{supt}} \, c_{\inf} & \text{Überdeckung oben, unten} \\ D & \text{Max. Durchmesser Leitung} \end{array}$

h Plattendicke

 h_{κ} Höhe GRAVIDUR TUB l_{κ} Länge GRAVIDUR TUB Länge Leitung mit Gefälle m Gefälle der Leitung

Literatur

SIA 262:2025, Betonbau, Schweizerischer Ingenieur und Architektenverein, Zürich, 2025, pp 116.

GRAVIS amazing strength

GRAVIS AG Birchstrasse 17, 3186 Düdingen

+41 26 492 30 10

info@gravis.ch

www.gravis.ch

Version 08.2025

