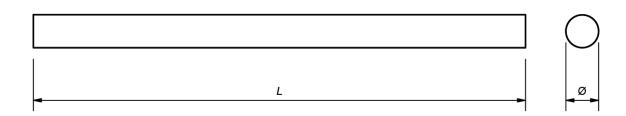


GRAVITEC® TEC-10

Technische Dokumentation Querkraftdorne für geringe Lasten

GRAVITEC


Beschreibung

GRAVITEC TEC-10

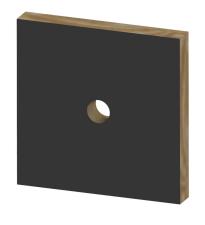
GRAVITEC TEC-10 sind Querkraftdorne aus nichtrostendem Stahl mit der Werkstoffnummer 1.4362. Somit sind sie gemäss EN 1993-1-4:2020 in der Korrosionsbeständigkeitsklasse III eingeteilt.

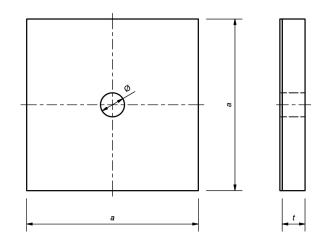
Modelle und Abmessungen

Dorne

GRAVITEC TEC-10/300D 020 mm, Einzelschubdorn aus nichtrostendem Stahl Korrosionsbeständigkeitsklasse III 020 mm, Einzelschubdorn aus nichtrostendem Stahl Korrosionsbeständigkeitsklasse III

Hülsen


GRAVITEC TEC-10/150PN	Ø 20 mm, L = 150 mm	Kunststoffhülse, uniaxial verschieblich
GRAVITEC TEC-10/150SN	Ø 20 mm, L = 150 mm	Hülse aus nichtrostendem Stahl, uniaxial verschieblich
GRAVITECTEC-10/150SL	Ø 20 mm, L = 150 mm	Hülse aus nichtrostendem Stahl, mit seitlicher Verschieblichkeit +/- 12.5 mm


Die erforderliche Einbindelänge für den TEC-10 während des Einbaus beträgt 130 mm. Deshalb genügt eine Hülse von 150 mm Länge, um die volle Lastübertragung sicherzustellen. Dies ermöglicht ein Öffnen und Schliessen von Δ e = 20 mm.

Falls dennoch längere Hülsen erwünscht sind, können diese auf Anfrage geliefert werden.

Brandschutzmanschetten

GRAVITEC FEU-10/20

 $150 \times 150 \,\mathrm{mm}$ $t = 20 \,\mathrm{mm}$

Brandschutzmanschette mit Dicke 20 mm

GRAVITEC FEU-10/30

 $150 \times 150 \text{ mm}$ t = 30 mm

Brandschutzmanschette mit Dicke 30 mm

Bei Fugenöffnungen > 30 mm können zwei Manschetten miteinander kombiniert werden.

Bemessungswerte

Die nachfolgenden Tragwiderstandswerte gelten für eine Bewehrungsüberdeckung von c_{nom} = 20 mm. Bei grösseren Überdeckungen ist die Zeile mit einer entsprechend geringeren Plattenstärke (h - $2c_{\text{nom}}$ + 40) zu verwenden.

Tragwiderstände bei Beton C25/30

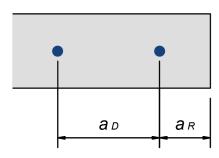
Plattenstärke	Fugenöffnung e [mm]									
[mm]	≤10	15	20	25	30	35	40	45	50	
150	26.3	25.1	23.9	22.8	21.8	20.8	19.9	19.1	18.3	
160	27.0	25.8	24.5	23.4	22.3	21.3	20.4	19.5	18.6	
180	28.5	27.1	25.7	24.5	23.3	22.2	21.1	20.1	19.2	
200	29.9	28.3	26.8	25.4	24.1	22.9	21.8	20.7	19.8	
220	31.2	29.5	27.9	26.3	24.9	23.6	22.4	21.3	20.3	
240	32.4	30.5	28.8	27.2	25.7	24.3	23.0	21.8	20.7	
250	33.0	31.1	29.3	27.6	26.0	24.6	23.3	22.0	20.9	
260	33.6	31.6	29.7	28.0	26.4	24.9	23.5	22.3	21.1	
≥280	34.7	32.5	30.5	28.7	27.0	25.4	24.0	22.7	21.5	

Tragwiderstände bei Beton C30/37

Plattenstärke		Fugenöffnung e [mm]									
[mm]	≤10	15	20	25	30	35	40	45	50		
150	27.6	26.2	25.0	23.8	22.7	21.6	20.6	19.7	18.8		
160	28.4	27.0	25.6	24.4	23.2	22.1	21.0	20.1	19.2		
180	29.9	28.3	26.9	25.5	24.2	22.9	21.8	20.8	19.8		
200	31.3	29.6	28.0	26.5	25.0	23.7	22.5	21.4	20.3		
220	32.7	30.8	29.0	27.4	25.9	24.4	23.1	21.9	20.8		
240	34.0	31.9	30.0	28.2	26.6	25.1	23.7	22.4	21.2		
250	34.6	32.4	30.5	28.6	26.9	25.4	24.0	22.6	21.4		
260	35.2	33.0	30.9	29.0	27.3	25.7	24.2	22.9	21.6		
≥280	36.3	34.0	31.8	29.8	27.9	26.2	24.7	23.3	22.0		

Konstruktive Durchbildung

Aufhängebewehrung


Für die Lasteinleitung in die Stahlbetondecke ist folgende Aufhängebewehrung vorzusehen. Diese sollte im Abstand von 20 mm seitlich neben dem Dorn bzw. der Hülse angeordnet werden.

Gesamte Aufhängebewehrung

bei Beton C25/30 bei Beton C30/37 $2 \times \emptyset 10 \text{ mm } L_{bd} = 460 \text{ mm}$ $2 \times \emptyset 10 \text{ mm } L_{bd} = 400 \text{ mm}$

Minimale Dornabstände

$$a_{R,min} = a_{D,min} / 2$$

Damit die Querkrafttragfähigkeit der Platte nicht überschritten wird, müssen die in den nachfolgenden Tabellen angegeben Mindestabstände zwischen den Dornen ($\alpha_{D,min}$) und an den Plattenränder ($\alpha_{R,min}$) eingehalten werden. Können diese Abstände nicht eingehalten werden, müssen entweder die in den vorgängig dargestellten Tabellen angegeben Tragwiderstandswerte der Dorne reduziert werden oder es muss eine Querkraftbewehrung eingelegt werden. Zusätzlich zur Querkrafttragfähigkeit ist zudem zu prüfen, ob sich der Ausbruchkegel der einzelnen Dornen überschneiden. Beide Kriterien wurden in den nachfolgenden Tabellen berücksichtigt.

Minimale Dornabstände in mm bei Beton C25/30 und Biegebewehrungsgehalt (senkrecht zur Fuge) p = 0.2%

Querkraft V_d	Plattenstärke h [mm]										
[kN]	150	160	180	200	220	240	250	260	≥280		
≤5	150	150	150	150	150	150	150	150	150		
10	150	150	150	150	150	150	150	150	150		
15	162	151	150	150	150	150	150	150	150		
20	216	202	178	160	150	150	150	150	150		
25	271	253	224	202	184	174	170	167	162		
30	325	304	269	242	221	208	205	201	195		
35	-	-	-	-	257	237	228	225	225		

Minimale Dornabstände in mm bei Beton C25/30 und Zugbewehrungsgehalt (senkrecht zur Fuge) p = 0.5%

Querkraft V_d	Plattenstärke <i>h</i> [mm]									
[kN]	150	160	180	200	220	240	250	260	≥280	
≤5	150	150	150	150	150	150	150	150	150	
10	150	150	150	150	150	150	150	150	150	
15	150	150	150	150	150	150	150	150	150	
20	191	177	158	151	150	150	150	150	150	
25	238	221	197	188	180	174	170	167	162	
30	286	266	233	225	216	208	205	201	195	
35	-	-	-	-	225	225	225	225	225	

Minimale Dornabstände in mm bei Beton C25/30 und Zugbewehrungsgehalt (senkrecht zur Fuge) p = 1.0%

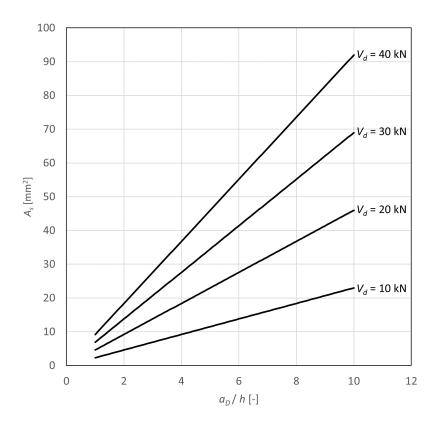
Querkraft V_d	Plattenstärke h [mm]											
[kN]	150	160	180	200	220	240	250	260	≥280			
≤5	150	150	150	150	150	150	150	150	150			
10	150	150	150	150	150	150	150	150	150			
15	150	150	150	150	150	150	150	150	150			
20	180	167	158	151	150	150	150	150	150			
25	225	209	197	188	180	174	170	167	162			
30	270	251	225	225	216	208	205	201	195			
35	_	_	_	-	225	225	225	225	225			

Minimale Dornabstände in mm bei Beton C30/37 und Zugbewehrungsgehalt (senkrecht zur Fuge) p = 0.2%

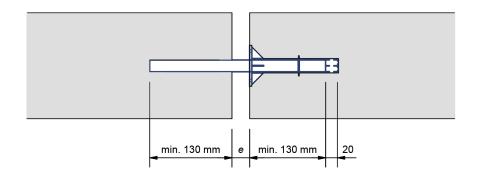
Querkraft V_d	Plattenstärke h [mm]										
[kN]	150	160	180	200	220	240	250	260	≥280		
≤5	150	150	150	150	150	150	150	150	150		
10	150	150	150	150	150	150	150	150	150		
15	151	150	150	150	150	150	150	150	150		
20	201	187	166	150	150	150	150	150	150		
25	251	234	207	187	172	165	163	160	155		
30	301	281	249	224	206	199	195	192	186		
35	-	-	-	262	239	225	225	224	217		
40	-	-	-	-	-	-	-	234	225		

Minimale Dornabstände in mm bei Beton C30/37 und Zugbewehrungsgehalt (senkrecht zur Fuge) p = 0.5%

Querkraft V_d	Plattenstärke <i>h</i> [mm]									
[kN]	150	160	180	200	220	240	250	260	≥280	
≤5	150	150	150	150	150	150	150	150	150	
10	150	150	150	150	150	150	150	150	150	
15	150	150	150	150	150	150	150	150	150	
20	175	163	151	150	150	150	150	150	150	
25	219	203	188	180	172	165	163	160	155	
30	262	244	225	216	206	199	195	192	186	
35	-	-	-	225	225	225	225	224	217	
40	-	-	-	-	-	-	-	225	225	


Minimale Dornabstände in mm bei Beton C30/37 und Zugbewehrungsgehalt (senkrecht zur Fuge) p = 1.0%

Querkraft V_d	Plattenstärke <i>h</i> [mm]									
[kN]	150	160	180	200	220	240	250	260	≥280	
≤5	150	150	150	150	150	150	150	150	150	
10	150	150	150	150	150	150	150	150	150	
15	150	150	150	150	150	150	150	150	150	
20	165	158	151	150	150	150	150	150	150	
25	206	198	188	180	172	165	163	160	155	
30	247	229	225	216	206	199	195	192	186	
35	-	-	-	225	225	225	225	224	217	
40	-	-	-	-	-	-	-	225	225	


Längsbewehrung parallel zur Fuge

Die Längsbewehrung ist entsprechend den statischen Gegebenheiten zu Bestimmen. Bei gleichmässiger Belastung und Dornverteilung kann sie mit folgendem Diagramm abgeschätzt werden. Das Diagramm zeigt die benötigte Bewehrungsquerschnittsfläche (A_s) in Abhängigkeit von dem Verhältnis des Dornabstandes zur Plattendicke (α_D/h).

Einbindelänge

Beim TEC-10 beträgt die minimale Einbindelänge während des Einbaus 130 mm. Die Hülsen sind dementsprechend in der Länge ausgelegt, so dass ein Öffnen und Schliessen der Fuge von 20 mm möglich ist. Eine grössere Einbindelänge als die 130 mm hat keinen Einfluss auf den Bemessungswert des Tragwiderstandes.

Bezeichnungen

Achsabstand der Dorne a_{D}

Abstand von Dornachse zum Plattenrand a_{R} Querschnittsfläche der Biegebewehrung C_{nom} Nominelle Bewehrungsüberdeckung

Plattendicke

L Länge des Dorns bzw. der Hülse

Verankerungslänge l_{bd}

Dicke der Brandschutzmanschette

Literatur

SN EN 1993-1-4:2020 (mit A1 + A2), Eurocode 3: Bemessung und Konstruktion von Stahlbauten -Teil 1-4: Allgemeine Bemessungsregeln – Ergänzende Regeln zur Anwendung von nichtrostenden Stählen, Schweizerischer Ingenieur- und Architektenverein, Zürich, 2020

GRAVIS amazing strength

GRAVIS AG Birchstrasse 17, 3186 Düdingen

+41 26 492 30 10

info@gravis.ch

www.gravis.ch

Version 08.2025

